An element of group 13 (formerly IIIB) of the periodic table; a.n. 5; r.a.m. 10.81; r.d. 2.34–2.37 (amorphous); m.p. 2300°C; b.p. 2550°C. It forms two allotropes; amorphous boron is a brown powder but metallic boron is black. The metallic form is very hard (9.3 on the Mohs scale) and is a poor electrical conductor at room temperature. At least three crystalline forms are possible; two are rhombohedral and the other tetragonal. The element is never found free in nature. It occurs as orthoboric acid in volcanic springs in Tuscany, as borates in kernite (Na2B4O7.4H2O), and as colemanite (Ca2B6O11.5H2O) in California. Samples usually contain isotopes in the ratio of 19.78% boron–10 to 80.22% boron–11. Extraction is achieved by vapour-phase reduction of boron trichloride with hydrogen on electrically heated filaments. Amorphous boron can be obtained by reducing the trioxide with magnesium powder. Boron when heated reacts with oxygen, halogens, oxidizing acids, and hot alkalis. It is used in semiconductors and in filaments for specialized aerospace applications. Amorphous boron is used in flares, giving a green coloration. The isotope boron–10 is used in nuclear reactor control rods and shields. The element was discovered in 1808 by Sir Humphry Davy and by Joseph Gay-Lussac and Louis Thenard.
https://www.webelements.com/boron/ Information from the WebElements site