For three commonly used coordinate systems we note
Cartesian coordinates: r = xi+yj+zk, dr = dxi + dyj + dzk.
Cylindrical polar coordinates: r = (r cos θ, r sin θ,z) dr = drer + rdθeθ + dzez where er = ( cos θ, sin θ, 0), eθ = (− sin θ, cos θ, 0), ez = (0, 0, 1).
Spherical polar coordinates: r = (r sin θ cos φ, r sin θ sin φ, r cos θ), dr = drer + rdθeθ + r sin θdφeφ where er = ( sin θ cos φ, sin θ sin φ, cos θ), eθ = ( sin θ cos φ, sin θ sin φ, cos θ), eφ = (– sin φ, cos φ,0).
Denoting the coordinates u1,u2,u3, we see in each case that
dr = h1du1e1 + h2du2e2 + h3du3e3,
where each hi > 0 and e1,e2,e3 is a right-handed orthonormal basis. Such coordinates are called orthogonal curvilinear coordinates, and general expressions for div, grad, and curl exist for such coordinates. (See appendix 16.) In particular the Jacobian equals h1h2h3.