请输入您要查询的字词:

 

单词 nuclear magnetic resonance
释义
nuclear magnetic resonance

Physics
  • The absorption of electromagnetic radiation at a suitable precise frequency by a nucleus with a nonzero magnetic moment in an external magnetic field. The phenomenon occurs if the nucleus has nonzero spin, in which case it behaves as a small magnet. In an external magnetic field, the nucleus’s magnetic moment vector precesses about the field direction but only certain orientations are allowed by quantum rules. Thus, for hydrogen (spin of ½) there are two possible states in the presence of a field, each with a slightly different energy. Nuclear magnetic resonance is the absorption of radiation at a photon energy equal to the difference between these levels, causing a transition from a lower to a higher energy state. For practical purposes, the difference in energy levels is small and the radiation is in the radio frequency region of the electromagnetic spectrum. It depends on the field strength.

    NMR can be used for the accurate determination of nuclear moments. It can also be used in a sensitive form of magnetometer to measure magnetic fields. In medicine, magnetic resonance imaging (MRI) has been developed, in which images of tissue are produced by magnetic-resonance techniques. See nuclear magnetic resonance imaging.

    The main application of NMR is as a technique for chemical analysis and structure determination, known as NMR spectroscopy. It depends on the fact that the electrons in a molecule shield the nucleus to some extent from the field, causing different atoms to absorb at slightly different frequencies (or at slightly different fields for a fixed frequency). Such effects are known as chemical shifts. There are two methods of NMR spectroscopy. In continuous wave (CW) NMR, the sample is subjected to a strong field, which can be varied in a controlled way over a small region. It is irradiated with radiation at a fixed frequency, and a detector monitors the field at the sample. As the field changes, absorption corresponding to transitions occurs at certain values, and this causes oscillations in the field, which induce a signal in the detector. Fourier transform (FT) NMR uses a fixed magnetic field and the sample is subjected to a high-intensity pulse of radiation covering a range of frequencies. The signal produced is analysed mathematically to give the NMR spectrum. The most common nucleus studied is 1H. For instance, an NMR spectrum of ethanol (CH3CH2OH) has three peaks in the ratio 3:2:1, corresponding to the three different hydrogen-atom environments. The peaks also have a fine structure caused by interaction between spins in the molecule. Other nuclei can also be used for NMR spectroscopy (e.g. 13C, 14N, 19F) although these generally have lower magnetic moment and natural abundance than hydrogen. See also electron-spin resonance.


Chemistry
  • The absorption of electromagnetic radiation at a suitable precise frequency by a nucleus with a nonzero magnetic moment in an external magnetic field. The phenomenon occurs if the nucleus has nonzero spin, in which case it behaves as a small magnet. In an external magnetic field, the nucleus’s magnetic moment vector precesses about the field direction but only certain orientations are allowed by quantum rules. Thus, for hydrogen (spin of ½‎) there are two possible states in the presence of a field, each with a slightly different energy. Nuclear magnetic resonance is the absorption of radiation at a photon energy equal to the difference between these levels, causing a transition from a lower to a higher energy state. For practical purposes, the difference in energy levels is small and the radiation is in the radiofrequency region of the electromagnetic spectrum. It depends on the field strength.

    NMR can be used for the accurate determination of nuclear moments. It can also be used in a sensitive form of magnetometer to measure magnetic fields. In medicine, magnetic resonance imaging (MRI) has been developed, in which images of tissue are produced by magnetic-resonance techniques.

    The main application of NMR is as a technique for chemical analysis and structure determination, known as NMR spectroscopy. It depends on the fact that the electrons in a molecule shield the nucleus to some extent from the field, causing different atoms to absorb at slightly different frequencies (or at slightly different fields for a fixed frequency). Such effects are known as chemical shifts. There are two methods of NMR spectroscopy. In continuous wave (CW) NMR, the sample is subjected to a strong field, which can be varied in a controlled way over a small region. It is irradiated with radiation at a fixed frequency, and a detector monitors the field at the sample. As the field changes, absorption corresponding to transitions occurs at certain values, and this causes oscillations in the field, which induce a signal in the detector. Fourier transform (FT) NMR uses a fixed magnetic field and the sample is subjected to a high-intensity pulse of radiation covering a range of frequencies. The signal produced is analysed mathematically to give the NMR spectrum. The most common nucleus studied is 1H. For instance, an NMR spectrum of ethanol (CH3CH2OH) has three peaks in the ratio 3:2:1, corresponding to the three different hydrogen-atom environments. The peaks also have a fine structure caused by interaction between spins in the molecule. Other nuclei can also be used for NMR spectroscopy (e.g. 13C, 14N, 19F) although these generally have lower magnetic moment and natural abundance than hydrogen. See also electron paramagnetic resonance; ENDOR.


Biology
  • The absorption of electromagnetic radiation (radio waves) by certain atomic nuclei placed in a strong and stable magnetic field. This results in a change of orientation of the nuclei, which respond to the magnetic field like miniature bar magnets. The main application of NMR is in a form of spectroscopy (NMR spectroscopy) used for chemical and biochemical analysis and structure determination. There are two methods of NMR spectroscopy. In continuous wave (CW) NMR, the sample is subjected to a strong magnetic field, which can be varied in a controlled way. As the field changes, absorption of radiation occurs at certain points; this produces oscillations in the field, which can be detected. Fourier transform (FT) NMR uses a fixed magnetic field and the sample is subjected to a high-intensity pulse of radiation covering a range of frequencies. The signal produced is analysed mathematically to give the NMR spectrum. The 1H nucleus is the one commonly studied; other biochemically useful nuclei are 31P, 13C, 14N, and 19F, although these have lower natural abundance than hydrogen and produce weaker signals. The spectrum produced is characteristic of the molecule absorbing the radiation. NMR has been exploited as the basis of magnetic resonance imaging.


随便看

 

科学参考收录了60776条科技类词条,基本涵盖了常见科技类参考文献及英语词汇的翻译,是科学学习和研究的有利工具。

 

Copyright © 2000-2023 Sciref.net All Rights Reserved
京ICP备2021023879号 更新时间:2024/6/28 17:56:55