A law stating that the total magnitude of a certain physical property of a system, such as its mass, energy, or charge, remains unchanged even though there may be exchanges of that property between components of the system. For example, imagine a table with a bottle of salt solution (NaCl), a bottle of silver nitrate solution (AgNO3), and a beaker standing on it. The mass of this table and its contents will not change even when some of the contents of the bottles are poured into the beaker. As a result of the reaction between the chemicals two new substances (silver chloride and sodium nitrate) will appear in the beaker:
but the total mass of the table and its contents will not change. This conservation of mass is a law of wide and general applicability, which is true for the universe as a whole, provided that the universe can be considered a closed system (nothing escaping from it, nothing being added to it). According to Einstein’s mass–energy relationship, every quantity of energy (E) has a mass (m), which is given by E/c2, where c is the speed of light. Therefore if mass is conserved, the law of conservation of energy must be of equally wide application. The laws of conservation of linear momentum and angular momentum also are believed to be universally true.
Because no way is known of either creating or destroying electric charge, the law of conservation of charge is also a law of universal application. Other quantities are also conserved in reactions between elementary particles.
See also Noether’s theorem.