A theorem used for calculating the conditional probability of an event, where conditional probability, Prob(x|y), is the probability of x while y holds.
This is a method in probabilistic reasoning where Prob(causes|symptoms) can be computed from knowledge of Prob(symptoms|causes), i.e. if we know statistical data on the occurrence of symptoms associated with a disease we can find the probability of those symptoms correctly indicating the disease. A classic application of Bayes’s theorem is found in the Prospector expert system, which successfully predicted the location of valuable mineral deposits.
The combinatorial number of conditional probabilities that have to be computed by the method can be significantly reduced by using Bayesian networks, where arcs between propositions define causal influences and the independence of relations.