A collision in which some of the kinetic energy of the colliding bodies is converted into internal energy in one body so that kinetic energy is not conserved. In collisions of macroscopic bodies some kinetic energy is turned into vibrational energy of the atoms, causing a heating effect. Collisions between molecules of a gas or liquid may also be inelastic as they cause changes in vibrational and rotational energy levels. In nuclear physics, an inelastic collision is one in which the incoming particle causes the nucleus it strikes to become excited or to break up. Deep inelastic scattering is a method of probing the structure of subatomic particles in much the same way as Rutherford probed the inside of the atom (see Rutherford scattering). Such experiments were performed on protons in the late 1960s using high-energy electrons at the Stanford Linear Accelerator Center (SLAC). As in Rutherford scattering, deep inelastic scattering of electrons by proton targets revealed that most of the incident electrons interacted very little because they pass straight through the target; only a small number bounced back very sharply. This means that the charge in the proton must be concentrated in small lumps, reminiscent of Rutherford’s discovery that charge in an atom is concentrated at the nucleus. However, in the case of the proton the evidence suggested that three distinct concentrations of charge existed rather than one (see elementary particles; parton; quantum chromodynamics).