Laws that were defined by Michael Faraday (1791–1867) to describe the process of electrolysis. The first law states that the mass of a given element liberated during electrolysis is directly proportional to the magnitude of the steady current consumed during the electrolysis and to the time for which the current passes. The second law states that when the same quantity of electricity is passed through different electrolytes, the masses of the different substances liberated are directly proportional to the masses of the substances that require one mole of electrons (1 faraday) for neutralization. The transfer of 1 mole of electrons corresponds to the passing of approximately 96,500 coulombs of electricity, which is known as the Faraday constant. A coulomb is equivalent to the passage of 1 ampere for 1 second.