A technique for determining the ionization potentials of molecules. In ultraviolet photoelectron spectroscopy (UPS) the sample is a gas or vapour irradiated with a narrow beam of ultraviolet radiation (usually from a helium source at 58.4 nm, 21.21 eV photon energy). The photoelectrons produced in accordance with the Einstein equation are passed through a slit into a vacuum region, where they are deflected by magnetic or electrostatic fields to give an energy spectrum. The photoelectron spectrum obtained has peaks corresponding to the ionization potentials of the molecule (and hence the orbital energies). The technique also gives information on the vibrational energy levels of the ions formed. X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis), is a similar analytical technique in which a beam of X-rays is used. In this case, the electrons ejected are from the inner shells of the atoms. Peaks in the electron spectrum for a particular element show characteristic chemical shifts, which depend on the presence of other atoms in the molecule. See also Koopmans’ theorem.