请输入您要查询的字词:

 

单词 line integral
释义
line integral

Physics
  • If a vector function V(x,y,z) is defined between two points A and B on a curve, the curve is approximately given by a series of equal directed chords Δ‎1l,Δ‎2l,…Δ‎nl. In each segment i of the curve it is possible to define the scalar product Vi·Δ‎il. If the sum of the scalar products

    in=Vi·Δil

    is considered, the line integral is defined by

    ABV·dl=limni=1nV·Δil.

    An example of a line integral is given by the case of a force F acting on a particle in the field of the force. The line integral ABF·dl is the work done on the particle as it moves from A to B because of the force.

    If the line integral is taken round a closed path (loop), the line integral is denoted by ∫C V·dl or ∮V·dl. A line integral for a scalar function ϕ‎(x,y,z) is defined in a similar way and is denoted ABϕdl. It is also possible to define another type of line integral for a vector function V by ABV×dl.


Mathematics
  • An integral along a curve. Say a curve C is parametrized by r(t) where a ≤ t ≤ b. For a scalar function f, defined on C, we define the line integral

    Cfds=abf(r(t))|drdt|dt,

    where s denotes arc length. It is independent of the parametrization. If f represents the density of a wire in the shape of C, then the line integral would equal the mass of the wire.

    For a vector function F, defined on C, we define the line integral

    CF·dr=abF(r(t))·drdtdt,

    which equals the work done by F along C. It is independent of the parametrization up to sign but changes sign if the orientation of the parametrization is reversed.

    Line integrals are also called path integrals, particularly in complex analysis.


随便看

 

科学参考收录了60776条科技类词条,基本涵盖了常见科技类参考文献及英语词汇的翻译,是科学学习和研究的有利工具。

 

Copyright © 2000-2023 Sciref.net All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/5 23:32:14