释义 |
Peano's postulates [pā`än·ōz `päs·chǝ·lǝts] MATHEMATICS The five axioms by which the natural numbers may be formally defined; they state that (1) there is a natural number 1; (2) every natural number n has a successor n+; (3) no natural number has 1 as its successor; (4) every set of natural numbers which contains 1 and the successor of every member of the set contains all the natural numbers; (5) if n+ = m+, then n = m. |